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Longshore motion generated on beaches by 
obliquely incident bores 

By S. C .  RYRIEt  
School of Mathematics, University of Bristol 

(Received 3 March 1982 and in revised form 1 September 1982) 

Numerical solutions of the two-dimensional shallow-watcr equations arc found for 
motion on a sloping beach generated by a single bore and by a periodic succession 
of bores, both incident a t  small angles. For the latter, periodic longshore motion can 
always be found if bottom friction (described here by the Chezy law) in included. The 
timescale of the development of longshore motion is also considered. 

1. Introduction 
In  many circumstances, longshore motion on a beacsh, shoreward of wave breaking, 

is generated by obliquely incident waves. The existence of longshore currents has long 
been known, and their importance, particularly their role in sediment transport, 
recognized. Komar ( 1976) discusses various existing predictions and correlations. 

The main difficulties in accurate mathematical modelling of longshore currents lie 
in the use of appropriate models for wave motion in shallow water and for the effect 
of viscous dissipation due to bottom friction. After waves have broken, there is 
normally a region, the surf zone, where wave fronts are steep and turbulent but where 
surface slopes are otherwise gentle. Such wave fronts are well described by the 
mathematical model of a turbulent bore. Longuet-Higgins (1970a, b) shows that the 
dissipation of wave energy within the surf zone provides, in a distinctive way, the 
driving stress for longshore motion. In  this work, such dissipation occurs as turbulent 
dissipation a t  bore fronts. 

I n  this paper we shall extend existing models of the propagation of normally 
incident bores in order to describe longshore motion generated by waves incident a t  a 
small angle on a plane beach. Although a bore is commonly the result of a wave having 
broken, we make no attempt to describe the breaking process or to connect surf zone 
motion with wave motion before breaking. The arrival of a bore in the area of beavh 
in which solutions are found is represented only by a sudden change in flow properties 
a t  the edge of that area. 

In  Q 2 we develop the equations used to describe the flow. We use the two-dimensional 
form of the finite-amplitude shallow-water equations, with the inclusion of a term 
representing bottom friction. We show that, if the angle of incidence a t  breaking is 
small, as offshore depth refraction often ensures is the case, equations for water depth 
and onshore velocity may be solved independently of longshore velocity. This latter 
may then be found by separately solving the longshore momentum equation. 

In 3 3 we consider the longshore motion generated by a single bore incident a t  a 
small angle to a plane beach. Though this problem is of less practical significance than 
the periodic motion studied later, it  serves as a simple illustration of a solution. We 
also, in this problem, omit any representation of bottom friction, in order to allow 
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comparisons and checks with exact inviscid results. The motion generated by a 
normally incident bore travelling up a sloping beach into water a t  rest is considered 
by Hibberd & Peregrine (1979), who solve the shallow-watcr equations using a 
Lax-Wendroff finite-difference scheme, which automatically allows for the existence 
and propagation of bores; and by Keller, Levine & Whitham (196O), who use a simple 
but accurate approximate rule, suggested by M'hitham ( 1958). Further analytical 
work on the motion of bores is summarized by Meycr & Taylor (1972). I n  the prcsent 
work we use the solutions of Hibberd & Peregrine for normally incident bores to 
describe the onshore motion, and we find the corresponding weak longshore motion. 

The main features of the onshore motion are described by Hibberd and Peregrine. 
We shall omit, as do Hibberd & Peregrine, the influence of the reflected bore, formed, 
in mathematical terms, by the convergence of receding characteristics. 

In  considering motion on a real beach, a more realistic. problem is that of finding 
the motion generated by a succession of incident bores, each travelling up the beach 
into the backwash of the preceding one. Since the inclusion of bottom friction is then 
necessary, we adopt the Chezy law to model, albeit crudely, the bottom shear stress. 
The onshore motion generated by a succession of normally incident bores is 
considered by Packwood (1980), who finds periodic solutions when the incident waves 
are periodic. In  $ 4, we consider the longshore motion generated by periodic bores 
incident a t  a small angle, with the solutions of Packwood serving as a basic onshore 
flow. By explicitly seeking a periodic solution, and owing to  the decoupling of the 
longshore and the onshore problems, we find a simple, characteristic-tracing solution 
method. Wc calculate an example of such a solution, and compare results with those 
of Longuet-Higgins (1970a,b), who uses linear long-wave theory to find a simple 
expression for the longshore current in terms of easily measured parameters of the 
incident waves. 

The formulation of the shallow-water equations used here is appropriate only for 
problems in which the motion is completely regular, as discussed in $2. I n  practice 
such conditions often do not occur (see e.g. Bowen & Guza 1978). Interaction with 
edge waves and wave groups formed by interference between two or more trains of 
incident waves are possible mechanisms by which the heights of breaking waves may 
vary. Though the solutions found here are valid only for strictly periodic incident 
waves, we may suppose that, if modulations in incident waves are sufficiently slow, 
such solutions will remain valid. We shall estimate, in $4, how fast we expect such 
a solution to react to changes in the incident waves. In  a further paper (Ryrie 1982) 
we consider the more general problem of how variations in incident waves may affect 
longshore motion. 

2. Mathematical model 
2.1. #hallow-water equations 

The assumption that water motion within the surf zone is such that, except near a 
bore, the lengthscale of variations in flow properties is much greater than the depth 
leads to the use of the finite-amplitude shallow-water equations (see e.g. Peregrine 
1972). The equations for conservation of mass and momentum may be written, using 
asterisks to denote dimensional quantities, as 

ah* a 
-+-(h*uf) = 0, 
at* ax,* 

&p*h*u:)+- a a ( *h*ufuj*)+p*g*h*-+B* all * = 0, 
ax; P ax? a 
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where h*(x:, t * )  denotes water depth, u:(xf, t*) denotes depth-averaged water 
velocity, Bf denotes stress due to bottom friction, and q*(x:, t * )  denotes the surface 
elevation above some reference level. 

We consider a regular plane beach whose contours are straight and parallel to the 
x2 direction : x: and xz are therefore coordinates respectively towards and parallel to 
the shoreline. We write the water depth as 

h*(x$, t*) = - S X : : + q * ( x : f ,  t * ) ,  (3) 

where s denotes the beach slope, assumed to be constant. 
In  order to  make quantities in the above expressions dimensionless we use the 

scheme of Hibberd & Peregrine (1979). This scheme has the advantage that any 
explicit dependence on s, except in the friction term, is removed, if s is small: we 
assume that s is sufficiently small that we need not distinguish between distances 
measured along the beach and along the horizontal. The dimensionless variables used 
are 

where H* is a reference depth, such a,s the depth of water a t  the seaward boundary 
of the area of beach being considered. 

I n  terms of these variables ( 1 )  and (2) become 

ah a 
-+-(hut) = 0, 
at axi 

aui au. a B.  
-+u. ---4+-(h+x1)+? = 0. 
at 7 axi axt h 

(5) 

We shall assume that the solutions to be found of these equations travel along the 
beach a t  a speed c*/sin 8, where c* and 8 are respectively the phase speed and angle 
of incidence of the incident waves : the quantity c*/sin 8 remains constant through 
the surf zone, by Snell’s law. For this assumption to be valid, wave properties seaward 
of the area of beach being considered must be periodic both in space and in time. 
We need therefore to assume that all waves originate offshore with the same initial 
conditions, so that the wave train sufficiently far offshore has straight parallel crests. 
We need also to assume that the offshore topography does not vary in the x2 direction, 
so that all points along a wave crest traverse the same topography up to breaking. 
Waves generated by, for instance, a point source at  a finite depth do not satisfy these 
assumptions. 

Following these assumptions, we define a new independent variable t’, referred to 
as pseudotime, by 

where subscript B denotes conditions at  the breaking point: the origin of the 
coordinate t ‘  moves along the beach with the solution. 

We also restrict our attention to waves incident a t  a small angle 6B to the beach. 
The lengthscale of variations in the x2 direction is therefore much greater than that 
in the x1 direction. Since waves approaching a beach from deep water are, in most 
circumstances, refracted towards the beach so that 8, is small, this restriction is not 
severe. 
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Accordingly, we scale x2 by defining 

where 

is a small parameter, chosen to make variations in xi of order unity. We also scale 
u2 by defining 

! u2 
U ,  = - >  

E 

choosing the scaling factor in order to ensure that the resulting equations of motion 
remain as general as possible. 

respectively, 
Equations (5) and (6) become, after replacing d / d t  and dldx, by a/&‘ and - d/&‘ 

(8) h,’ + (hu,),. = €2(hUi),’, 

B 
h 

Ult’ + u1 U I Z ,  + hZl + 1 +’ = €2.;. Ul,’, (9) 

Equations (8) and (9), with e and B, set to zero, are the inviscid finite-amplitude 
shallow-water equations, for onshore motion only, as used by Hibberd & Peregrine 
(1979). The use of pseudotime and the assumption of longshore regularity means that 
(8)-(10) describe the motion a t  a fixed point along the beach for varying time, as 
solutions move bodily along the beach. 

We shall find, in considering periodic bores, that  i t  is necessary to include some 
representation of the effect of bottom friction in order to find physically realistic 
solutions. We adopt, for this purpose, the commonly used Ch6zy friction law, 
according to which the bottom-friction stress is 

BF = Cp* (~ j *$ )?  u?, 
where C is a dimensionless constant. There are various estimates of the value of the 
friction coefficient C likely to apply to unsteady motion over a sandy bottom. 
Longuet-Higgins (1970a, b )  takes an estimate, based on Nikuradse’s experiments on 
sand-roughened pipes, of about 0.007 for sand grains with a diameter of 1 mm. Meyer 
(1969) suggests an order of magnitude of about 0.01 for (2. Grant & Madsen (1979) 
estimate bottom-friction stress for oscillating motion over a rough bottom by taking 
a turbulent boundary-layer model for flow near the bottom : for a typical beach they 
find C also of order 0.01. 

In  terms of the dimensionless variables used here, 

Bi = f ( U j U j ) h i ,  

where f = C/s. 
The solution of (8)-( 10) for an arbitrary value of E presents a considerable problem. 

We shall considerably simplify it,  however, by using only the terms in each equation 
of leading order in E ,  thereby finding solutions to zero order in E for the zero-order 
quantities h and u1 and to  first order for the first-order quantity u2. We therefore 



Longshore motion generated by obliquely incident bores 197 

use the equations h, + (hu), = 0, 

= 0, flulu u,+uu,+h,+l+- 
h 

f IUI'U - v,+uw,-h,+- - 0, 
h 

where we have, for convenience, replaced x1 and xi by x and y ;  u1 and uk by u and 
v, and t' by t ,  referring to the latter as the time variable. We see that (12) is decoupled 
from ( l l a ,  b) ,  and is a perturbation equation for v(z,  t ) ,  once h(z ,  t )  and u(x, t )  
are known, as solutions of ( 1  l ) ,  or indeed by any other means. We shall refer to  the 
separate problems of solving (11)  and (12) as respectively the onshore problem and 
the longshore problem. In physical terms, the decoupling of the longshore momentum 
equation means that we neglect any effect on the onshore motion of interaction 
between onshore and longshore motion. This neglect is justifiable when the omitted 
terms of (8)-(10) are indeed small compared with the terms retained: we shall, in $4, 
estimate the likely range of E and hence of B,, for which their omission is appropriate. 

The description that we shall use of wave fronts, as turbulent bores, means that 
the shallow-water equations must be supplemented by bore relations, regarded as 
internal boundary conditions, between the physical quantities h, u and v on either 
side of a bore. These relations, which ensure continuity across a bore of mass flux, 
momentum flux normal to the bore and of the velocity component parallel to  the 
bore, are derived by, for instance, Lamb (1932). 

In  our notation, they may be written 

- U[h] + [hu] = 0, (13a) 

-U[hu]+[hu2+&2] = 0, (13b) 

- U[hv - &h2] + [huv] = 0, (13c) 

where U is the speed of the bore, and [ ] denotes the jump in a quantity across a 
bore. 

These relations are those which apply to uniform flow on either side of a 
hypothetical point discontinuity: any effects due to the structure of the bore or to 
changing depth near the bore are not included. 

2.2. Characteristic form 

The shallow-water equations are hyperbolic, and their equivalent characteristic form 
can, in some circumstances, be useful, particularly if the problem being considered 
is such that Riemann invariants can be found. Analysis of ( l l ) ,  (12) by standard 
methods (e.g. Courant & Hilbert 1962) yields an equivalent form defining three 
families of characteristics : 

dx 
along - dt = ufc, (14) 

IUI u 
(uf2c+t),+f- h = 0 

blU2 IUIV dx 
h h dt 

(v-h-x-&h2),-f---+f-- = 0 along - = u: 

where c = h2 ; in each case a subscript u denotes differentiation along the corresponding 
characteristic whose local slope dx ld t  has been found; i.e. 

a a d x a  
au - at dt ax 
- - -+--, 
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If bottom friction is neglected, all three families of characteristics have Riemann 
invariants. Equation (14) then defines the well-known characteristics for one- 
dimensional inviscid motion : we refer to these as C+ and C- characteristics, depending 
upon the sign taken. 

Equation (15) defines anew family of characteristics, referred to as Co characteristics, 
which carry information about the longshore motion. The paths of these characteristics 
are fluid-particle paths: the quantity v - h-x-$u2 is constant along these paths, and 
is thus carried along with a fluid particle, if there is no friction. We introduce notation 
for the characteristic variables as 

a = u+2c+t, 

- p  = u-2c+t, 
y=v-h--z--' 2 2u 

so that a,  /3 and y are Riemann invariants if there is no dissipation. 
When bottom friction is included, however, no set of characteristics possesses a 

Riemann invariant : the effect of frictional dissipation is to change continuously, 
along a characteristic path, the value of the characteristic variable, which would 
otherwise remain constant. 

Although we have carried out the above analysis by assuming the Cht5zy friction 
law, the paths of all three characteristic families, and the corresponding characteristic 
variables, are independent of the expression used for the bottom-friction stress, so 
long as i t  does not involve derivatives of u and h. The major qualitative features of 
the motion we are considering are then independent of the form of friction law used. 

The influence of longshore motion on the C+ and C- characteristics may be found 
by carrying out the derivation of the characteristic form (( 14), (15)) with the inclusion 
of higher-order terms in E ,  from (8)-(10). After doing so, we find that the O(e2) terms 
that appear in (14) are such as to make this equation non-integrable, even if friction 
is excluded : the Cf and C- Characteristics do not therefore have Riemann invariants 
in this case. This does not apply to (15): the Co characteristics do have Riemann 
invariants when 0(e2) terms are included, if friction is neglected. 

3. A single uniform bore 
In this section, we apply the shallow-water equations (1 1 ), (12) to  find the longshore 

motion generated by a single bore, incident a t  a small angle, during both the travel 
of the bore up the beach and the subsequent run-up and backwash. For the reasons 
described in $ 1 ,  we neglect bottom friction. We take the undisturbed shoreline and 
the seaward boundary, a t  which the undisturbed dimensionless depth is 1, to be a t  
x = 0 and x = - 1 respectively: the bed has a flat bottom in x < - 1. The incident 
bore is uniform in the sense that, as i t  approaches from x < - 1, flow properties behind 
it are constant. It thercfore represents the simplest physically realizable bore, a 
boundary between two regions of constant state. The bore reaches x = - 1 a t  the 
moment t = 0. 

Assuming that the incident bore is subcritical, as bores on a beach usually are, the 
characteristics of the motion are as sketched in figure 1 .  In  t < 0, advancing C+ 
characteristics arrive a t  the bore, and receding C- and advancing Go characteristics 
leave it. Region I, in which the sloping beach has no influence, is of constant state, 
with straight characteristics. Since there is no bottom slope here, the forms of the 
Riemann invariants are different from those found in $ 2 :  their constant values are 
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FIGURE 1. Paths of C', C- and Co characteristics, for a single bore, in (x, t)-space. The path of the 
bore is shown by the wavy line; heavy lines separate regions I-I\' of the solution, as described in 
the text. 

now a, = u + 2 c ,  

p, = u - 2 c ,  

71 =v-h-&' 

on C+, C- and Co characteristics respectively. 
The receding C- characteristic, denoted by Cg, which leaves x = - 1 a t  t = 0, 

bounds region 11, within which the influence of the beach is first felt. Region I1 is 
also bounded by x = - 1 ,  so that the form (16 )  of the Riemann invariants still holds 
within i t ;  the advancing Cf characteristics carry the value a1 up to  x = - 1. This is 
the boundary condition used on x = - 1 by Hibberd & Peregrine. 

The Co characteristics leaving the bore in region I carry the value y1 to the 
boundary x = - 1 : we use this as the boundary condition for the longshore problem, 
since it is that necessary for consistency with uniform motion in region I. 

The Co characteristic, denoted by Cg, which leaves the bore a t  x = - 1, bounds 
region 111, within which the sloping beach has no influence on the longshore motion, 
and where y = v-h-!ju2-x is constant and equal to y l +  1. Shoreward of COB, in 
region IV ,  the influence of the beach slope is felt, and values of y are those 
immediately behind the bore, as determined by the bore relations. The specified 
distribution of v on x = - 1 therefore affects the solution only within region 111. 

We therefore seek solutions of ( l l ) ,  (12), with boundary conditions 

h(x, 0 )  = -5 ,  ( 1 7 4  

u (x ,O)  = v ( x ,  0) = 0, 117b) 

u+2c  = constant on x = - 1, (17c )  

v - h - +u,2 = constant on I(: = - 1. ( 1 7 4  
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We find solutions, for h(x, t )  and u(x ,  t ) ,  of (11)  by the numerical scheme of Hibberd 
& Peregrine (1979), and we develop a similar scheme to solve (12) for v(z ,  t ) .  

For hyperbolic equations in conservation form, and when shocks, or bores, may 
be present, a Lax-Wendroff finite-difference scheme, which ensures that the bore 
relations are satisfied whenever a bore appears, is particularly suitable : such schemes 
are described by Richtmyer & Morton (1967). Equation (12), without the friction 
term, may be written in conservation form as 

R, +S, = 0, 

where 
R ( x ,  t )  = hv-ih’, 

S(X, t )  = huv. 

We find solutions on a space-time grid, with step length Ax and time-step At: 
Ax = 0.01 and At = 0.004 were used. The finite-difference scheme used was 

R?f1 3 = R?-Ih(#? 2 + 1 - + $h2(gT - gj”-,) + (dj” - dj”-I ) 9 (18) 
where 

gj” = + uj”) (8jn+l -#j”), 

dj” = I ~ j ” , , - ~ j ” l  (Rj”+l-Rj”), 

h = At/Ax. 

The last term of (18) is the so-called artificial-viscosity term, which is commonly 
included in Lax-Wendroff methods when applied to nonlinear problems. I ts  effect 
is to attenuate a spurious numerical effect, the appearance of high-frequency 
oscillations which may develop near bores: elsewhere, this term is only of the samc 
order as the truncation error and has very little effect. A similar term was included 
in the scheme of Hibberd & Peregrine. 

The linear stability criterion for the scheme of (18) without the artificial-viscosity 
term is the Courant condition 

At 1 -<-, 
A X  bml 

where um is the maximum velocity found. 
The scheme of (18) allows the calculations of v a t  all grid points, given values of 

h and u at all points, except for grid points at the shoreline. For such points, a simpler 
first-order one-sided finite-difference approximation to the characteristic: equation 
was used, and produced satisfactory results. 

3.1. Analytic solution 

We may use an existing model of onshore motion during run-up to gain some 
expectation of the longshore motion during this phase of the solution. Keller et al. 
(1960) show that, while bore height tends to zero as the borc approaches the shoreline, 
the bore speed U and the shoreward particle velocity u immediately behind the borc 
tend to the same limit, u,, say. The value of u, determines the motion a t  and close 
to the shoreline during run-up and backwash, though the value predicted by the point 
discontinuity model of Keller el al. may not in practice bc attained, since the effects 
of bore structure are likely to be significant when the distance of the bore from the 
shoreline is comparable to  bore width. The dependenoc of shoreline motion only on 
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u, allows Shen & Meyer (1963) to find solutions of the shallowwater equations valid 
near the shoreline during run-up. In our notation, these are. 

where 

7 denotes t ime since start of run-up, and x, denotes the position of the shoreline, given 

6 = x-x,. 

by 
x, = u , r - p .  (20) 

We may extend this to find the longshore velocity v(6, r )  near the run-up tip by solving 
the longshore momentum (12), with f = 0, and h and u givcn by (19). We find thc 
solution to bc 

for some constant us. This indicates that the value of v a t  the shoreline 6 = 0 is 
constant with time, and is equal to us. This is consistent wi th  the observation of Shen 
& Meyer that the motion of the shoreline is that of a particle moving freely under 
gravity. We may find us by noting that the shoreline, defined by h, = 0, us = dx, /dt ,  
where a subscript s denotes evaluation at the shoreline, is a Po characteristic, along 
which 

ys = V,-$ .L~-X~ = constant. 

After using (20) and the bore relations (13), we find 

v, = u;. (22) 

Equations (19) and (21) now express the motion near the shoreline, in terms only of 
the final bore velocity u,. After the formation of thc backwash bore, howevcr, the 
shoreline is no longer a coincidence of C+ and C- characteristics and no longer moves 
only under gravity, so that  (22) no longer holds. 

The derivation of (19) and (21) neglects the influence of motion behind the bore 
before it collapses. One result of this motion is the creation of vertical vorticity: in 
physical (z, y)-space the bore crest is curved, and its varying angle of incidence causes 
the flow behind it to be rotational. The velocity field during run-up is therefore also 
rotational. The velocity field of (19) and (21) is, however, irrotational, and we do not 
expect it to  provide ari accurate prediction of longshore motion except near the 
shoreline itself. 

3.2. Description of results 

We show results for a bore of initial height 0.5. The calculation proceeds until a new 
constant water level, with negligible onshore motion, is reached. Solutions to the 
onshore problem arc shown by Hibberd & Peregrine, for an initial bore of height 0-6: 
results for a bore of height 0.5 are similar. 

Figure 2 shows instantaneous longshore velocity profilos a t  various times. The 
shoreline velocity reaches a maximum a t  about t = 2.0, and then remains nearly 
constant until the backwash bore forms a t  about t = 4.5. The computed values of c 
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FIGURE 2. Instantaneous profiles of longshore velocity v versus z a t  times during the computation, 
as shown, for a single bore, of initial height 0.5. ---, local shoreline solution, from (21) with u, = 1.6. 

near the shoreline do not increase monotonically, but are rounded off over thc last 
few grid steps. This is an effect of finite resolution on the modelling of the bore 
collapse: the effect is carried along the Co characteristirs and remains close to the 
shoreline. 

For comparison, the local shoreline solution of (21) is also shown, using the value 
u, = 1.6 found from the solution to the onshore problem. Reasonable agreement is 
found, once the initial shoreline acceleration has taken place. 

The backwash bore substantially decreases the velocity near the shoreline, which 
is rapidly brought to rest. The motion then settles to a new steady state, with a 
constant value v1 of v except shoreward of the characteristic COB, where the vorticity 
caused by the bore's oblique travel up the beach remains. The boundary condition 
at  x = - 1, that v-h-+u2 remain constant there, may be used to find the expected 
value of vl, once the new constant water level is known: this level may itself be 
deduced from the boundary condition to the onshore problem. We find v 1  = 1.14 t o  
be the expected value; this agrees closely with the results of the computations. If 
the effect of the reflected bore were included, the eventual steady value would be 
v, = 1.09, only slightly less. Peregrine (private communication) shows that the 
reflected bore does indeed form, offshore of x = - 1, a t  a time within our 
computations. 

A further cheek on accuracy was made by checking that the total momentum within 
the computation area was always equal to  the time-integrated flux of momentum 
through the seaward boundary. 

I n  figure 3 we show contours of longshore velocity and fluid particle paths (which 
are Co characteristics) for an initial bore of height 0.5. The characteristic Cg, which 
leaves x = - 1 a t  t = 0, lies always within the computation area and takes an eventual 
position close to the initial shoreline. This justifies the use of the boundary condition 
y = constant on x = - 1 ,  and shows that longshore motion during a large part of the 
run-up and backwash is uninfluenced by longshore motion a t  the seaward boundary. 



Longshore motion generuted by obliquely incident bores 203 

r 

- 1  0 1 2 3 

FIGURE 3. -, contours of longshore velocity v,  a t  values shown; ---, Co characteristics; 
and --, path of shoreline, in (s,t)-space, for a single bore of initial height 0.5. 

X 

Conversely, no information about longshore motion generated by the bore’s travel 
up the beach is transmitted to sea. 

Contours of longshore velocity are also shown. Close to the shoreline, during run-up. 
they are almost parabolic, due to the dominance of gravity here. A small disturbance 
is visible, travelling along COB. This is a numerical effect, typical of Lax-N’cndroff 
schemes, and is due to the discontinuity in beach slope a t  x = - 1 .  

4. Periodic bores 
4.1. The onshore problem 

As an attempt to model more realistically longshore motion on a beach, we now find 
solutions to the equations of motion (1 l ) ,  (12) drivun by a periodic succession of 
incident bores. The formulation of the problem is similar to that already used: we 
apply appropriate boundary conditions at x = - 1 and solve, in x > - 1, (12) for 
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v (x ,  t ) ,  with known onshore motion, u ( x ,  t )  and h(x ,  t ) .  The solution method adopted for 
the onshore problem is that  of Packwood (1980), who solves (1 1) using a Lax-Wendroff 
finite-difference scheme similar to that of Hibberd & Peregrine (1979). Packwood 
forces periodic solutions by applying periodic boundary conditions, in the form of 
a periodic distribution of a,(t) = u( - 1, t )  +2c(  - 1, t ) ,  the value of the Riemann 
invariant on the advancing C' characteristics. The flow is started from rest a t  t = 0 
and the computation proceeds until an effectively periodic flow throughout x > - 1 
is found. The physical variables u and h are not periodic a t  x = - 1 until this is 
achieved. 

The distribution al( t )  takes a maximum value a: immediately behind an arriving 
bore and a minimum a; ahead of i t ;  since a, = 2 is the value in the still water in 
x > - 1 a t  t = 0, this value is taken to be the mean of a: and a;, with a linear variation 
between them : 

t 

'I' ' 
alp)  = a:+2(2-a:)- 

where T is the period. The value a: is determined by the height of the first bore. 
The resulting onshore motion is found by Packwood (1980) both for inviscid flow 

and using Ch6zy friction. He finds, however, that  the inclusion of friction has very 
little effect, except in determining the position of the shoreline, particularly during 
backwash: the effect of the inclusion of the viscous term is to leave a thin layer of 
water slowly draining down the beach. This is not the case for the longshore problem, 
where friction is important in determining the magnitude of the solutions. For these 
reasons, and since i t  facilitates the treatment of the longshore problem, we shall 
neglect the onshore component of bottom friction in the solutions described below ; 
we show below t h a t  the effect of this neglect is small. 

4.2. The longshore problem 

The decoupling of the longshore problem allows us to reach some conclusions about 
periodic solutions for v (x ,  t )  of (12). We will show that solutions exist for any non-zero 
value of the friction coefficient f ,  and that a periodic solution v(x, t )  may be found 
directly, without having to start the computation from rest, so long as periodic values 
h ( x ,  t )  and u ( x ,  t )  are known. 

Figure 4 is a sketch of such a periodic solution, showing Co characteristics, along 
with (15) holds; this may be written 

having neglected the x-component of friction stress, as noted above. 
We use suffixes 0, 1 and 2 to  denote values, on a particular characteristic, 

respectively immediately behind a bore and immediately ahead of and behind the 
succeeding bore, as shown. If the motion is periodic yo = yz. The bore relations (13) 
may be used to relate y1 and yz  : we may manipulate (13) to find 

where now [ )2.  The right-hand side of (24) is, in general, non-zero, 
so that there is a jump in y across a bore. The role of friction is to dissipate y along 
a characteristic, according to  (23) ; periodicity is achieved when, for each characteristic, 

1 = ( - ( 
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FIGURE 4. Sketch of CO characteristics, in (x, t)-space, for periodic motion with 
periodic incident bores. Paths of bores are shown by wavy lines. 

the increase in y due to a bore crossing it once per period is exactly matched by the 
decrease along it due to friction during a period. 

We use (23) to find an explicit solution for the longshore velocity by integration 
along a characteristic. Equation (23) may be solved to  give 

where g = go  denotes, as above, the point on a characteristic immediately behind 
a bore, and 

IuI 
~ ( g )  = exp { - i , f t d v / } .  

The correct periodicity of (25) is enforced by choosing y(cr,) to ensure that 

y ( g o ) - r ( ~ J  = lrl. 
We find, using (25), that 

IuI 
. . , f - ( ( h + & h Z + X )  

1 - E ( r A  (26) 

d a  
h 

,YI-E(flA 1 E(n) 
UO 

Y(U0) = 

The effect of a small value off may be seen from this solution : analysis of (25) shows 
that v = O(l/f) asf+O. 

That D becomes large iff is small is important in that was assumed to be a t  most 
O(1) when terms in c2 and c3 were neglected in (8)-(10). If v is large, these terms may 
also be large, depending on the magnitude of c 2 / f .  Below, we estimate the limit on 8 
which this restriction imposes. 

Boundary conditions a t  5 = - 1 may be given by specifying a distribution y l (  - 1, t ) ,  
for values o f t  a t  which u( - 1, t )  > 0; if u( - 1,t) < 0, Co characteristics are crossing 
x = - 1 seawards, and the value of y1 there is determined by the flow. A chosen 
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FI(JITRE 5 .  Instantaneous profiles of longshore velocity 71 versus x at various times during a periodic, 
for periodic. bores. Period = 1.048; Friction coefficientf = 0.5. time mean of z1 over a period. 

distribution affects the solution only seaward of COB. in the example shown below, the 
region between x = - 1 and C& was only a small part of the computation and no 
solutions here are shown. 

An example of a solution, with a period T = 1.048 in dimensionless units, is shown 
in figurc 5. The initial bore has a height of 05, and the onshore motion settled to 
effective periodicity aftrr about 12 periods. At this value of T, no secondary bores 
form within the flow, and no reflected bores would be formed offshore of x = - 1. 

Pull solutions arc shown for f = 0.5. in terms of dimensional quantities, this could 
correspond to, for instance, waves of period 10 s, breaking at a depth of 1 m, on a 
beach of slope 1 30, with a friction coefficient C' = 0017 

1)ifficultics were found in computing the solution near the shoreline, where depth 
and bore height arc both small, and the bore width, as described numerically, is no 
longer small. The computed values ofv here are probably less accurate than elsewhere. 

Figure 6 shou s instantaneous profiles of longshore velocity 11 a t  intervals during 
a period. t = 0 is thc moment at which a bore arrives at II: = - 1. The mean-velocity 
profile 6(x) ,  averagctl ovcr a period, is also shown. 

As a bore nears thc shoreline, its height gradually decreases : this correspondingly 
decreases the driving stress for the longshore velocity, which is indeed zero at  the 
shorclint. This is due also to the effect of friction in shallow water: we may see from 
(2.3) that frictional damping increascs as h decreases. That the longshore current is 
zero a t  thc shoreline agrches with the findings of experiments suvh as those of Galvin 
& Eagleson (1965) and confirms that the use of this as a boundary condition in simpler 
ciewriptions of longshore motion, such as that of Longuet-Higgins (1970a,b), is 
reasonable. 

Figure fi shows contours of longshore velocity and paths of Po characteristics for 
one period. 

Since by changing the value off we do not change the paths of the characteristics 
but only the values of 2, found along them, we do not show full results for other values 
o f f .  In figure 7,  however, we shou, for various values off, envelopes of maximum 
and minimum values of v, over one period, at all points across the surf zone. The details 
of velocity profiles within these envelopes are similar to those of figure 5 .  For each 
valuc of j ,  6 varics almost linearly with x : this agrees qualitatively with the results 
of Longuet-Higgins (1!27Ou,b). He finds, using linear long-wave theory to describe 
wave motion, and before wnsidering the effects of offshore mixing, that  longshore 
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FIGURE 6. -, C'O characteristics, and ---, contours of longshore velocity, at ralues shown, for 
periodic incident bores. Period = 1.048; friction coefficient f = 0.5. The path of the bore is shown 
by a heavy line. 

current decreases linearly from a maximum fiB at the breaker line to zero a t  the 
shoreline. In  our notation 

where a is the ratio of amplitude to depth, assumed by Longuet-Higgins to remain 
constant across the surf zone. In  the example already used here, this ratio is 0.29 at 
the seaward boundary, increasing to about 0.4 midway through the surf zone. We 
show a comparison of our results with thosr of Longuet-Higgins in figure 7 ,  using 
the value a = 0.29 in (27). 

The difference between the results of Longuet-Higgins (197Oa,b) and the present 
work is due firstly to modelling of frictional dissipation which differs from the analysis 
of Longuet-Higgins who assumed sinusoidal onshore motion, and secwndly to the 
difference in the incident longshore momentum fluxes of linear waves and of' bores. 
The first of these seems to be the greater effect : choosing a = 0.24 in order to match 
the radiation stresses S,, of the two models, thereby removing the second effect, 
reduces 'uB found from (27) from 1.14 to 0.95 for f = 0.5, while the value found in the 
present work is about 17 = 0.64. 

We may now examine the strength of the restriction on the validity of the solutions 
presented here of the assumption of a small angle of incidence of the approaching 
waves. If we assume that the second and third terms on the left-hand side of (10) are 
not larger than the first term. then the neglect of the right-hand side is justified, 
on averaging over a wave period, and remembering that E = cP1 sin 8. where c is 
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FIGURE 7 .  Envelope of maximum and minimum values over one period of longshore velocity v for 
various values of frict>ion coefficient f. --, solution of Longuet-Higgins ( l970a ,h )  as described 
in the text. 

x 

the phase speed of the incident waves, if 
C2 

sinat? 4 :, 
21 

f T U ,  ca 

h[v] j 

sin26' 4 
- 

where an overbar denotes the average over a period, Urn = IuI and we have assumed 
that - 7  

The first of the conditions (28) also ensures that the neglect of thc right-hand sides 
of ( 8 )  and (9) is justified. 

On applying these restrictions to the calculated example, with f = 0.5, wc find the 
restrictions on the angle of incidence to  be 

sin 6 < 1.6, sin 0 4 0.5. 

In  practice such restrictions are unlikely to be severe. The effect of depth refraction 
on waves approaching a coast ensures that in most circumstances, and particularly 
for gentle offshore waves, the angle of incidence of waves when they break is indeed 
small. 

We may use the results found here retrospectively to confirm that the effect of 
onshore friction on the longshore problem is indeed small, so that the neglect of the 
second term of (15), as described above, is justified. By taking the approximate 
average over time of the equations of motion, we find that the inclusion of the 
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neglected term changes V by only about 3 yo when f = 0.5, and by less when ,f is 
smaller. 

Comparison with experimental and field measurements of longshore currcnts 
is hampered by the effect of random processes in the surf zone. 1,onguet-Higgins 
(1970a,b) supposes that theoretical longshore current profiles are modified by 
horizontal turbulent mixing, which carries some longshorc momentum seaward across 
the breaker line. He finds rough quantitative agreement wi th  the results of the 
experiments of Galvin & Eagleson (1965) by assuming that locd distance from the 
shoreline is an appropriate mixing length. However, since turbulence is induced by 
the passage of turbulent bores across the shoreline, it may be that local bore width 
is a more realistic local mixing length. Smoothing of the longshore current profile may 
also be due to randomness in the incident wave field: Battjes (1972) shows that the 
effect of this on the current profile may be similar to the effect of lateral mixing. 

4.3. Development of periodic solutions 

If its angle of incidence is not so large as to violate the conditions (28), then a periodic 
wavetrain may generate steady longshore motion on a beach as described above. 
However, some time is required for such a solution to develop from rest (or from any 
other initial state) and, in practice, the incident waves themselves may also vary with 
time. The periodic solutions already described are, therefore, likely to be appropriate 
only if the time taken to reach such a solution is not too long, when compared with 
the timescale of variations in the incident waves. 

Inspection of the longshore momentum equation, (12), shows that the use of f t  as 
a time variable and f x  as a space variable in solving this equation gives solutions 
independent off. However, the onshore momentum equation cannot so be treated: 
the term arising from the bottom slope cannot be scaled. We cannot, therefore, 
completely remove f from the problem, but this suggests that the use of fT as a 
timescale may be appropriate in studying longshore motion. Note that this quantity 
is independent of beach slope : in dimensional quantities 

fT  = CT*($)i * .  

This effect also means that the timescale of the development of longshorc motion is 
inversely proportional to the friction factor. 

As a specific example of this, and for simplicity in formulating thc problem, we 
shall consider the development of periodic solutions in terms of the quantity y,(tr), 
defined as y ( s ,  t )  evaluated along C:, the Co characteristic that  leaves x = - 1 when 
the initial bore arrives there, a t  t = 0 ;  cr is a coordinate measured along this 
characteristic. As each successive bore meets (2: it instantaneously increases y s  by 
an amount [ y ] ,  while between bores ys decreases according to (23). Wc use thc 
notation y p )  to denote the value of ys a t  the start of the nth period. 

We may now use (25) and the bore relation (24) to find 

YP+l) = E(a,) (Yp’+gI )+[Y l>  (29) 
where 

We assume that E ( g 1 ) ,  g1 and [y]  do not vary from one wave to the next, though 
in practice they do vary as the periodic onshore motion dcvclops. However, since we 
seek only an estimate of the timescale of the developrncnt of longshore motion, we 
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FIGURE 8. Development of periodic solutions: T,, versus number of 
periods n for values shown of friction coefficient f. 

neglect this, and use below the values for E(v , ) ,  g1 and [ y ]  for the fully developed 
periodic onshore motion, all evaluated at x = - 1. 

The periodic longshore motion already described is represented in (29) by yi"),  the 
solution for which y?+l) = yin). Writing 

we find from (29) 

which, with the initial condition To = 0, expresses iteratively the variation with time 
of the quantity r. r represents the state of the development of longshore motion: 
r = 0 and r = 1 correspond respectively to the initial undisturbed state and the 
eventual periodic solution. 

We show in figure 8 the variation of r with time for three values off.  Although 
r is only defined a t  integer values of n = t /T ,  we show i t ,  for convenience, as a 
continuous function of n. In  each case, i t  varies smoothly and monotonically from 
zero to almost one for large values of n. This suggests that  the periodic solution of 
(25) would indeed be the result of solving the full equations from rest. 

Figure 8 allows us to estimate the time required to  reach periodicity; e.g. for f = 0.5, 
with waves of period 10 s, r is within 5 yo of its steady-state value after about 6 min, 
whereas for f = 0.1 this takes about 30 min. Such times are likely to be too long, in 
many cases, to allow for the development of a periodic solution over, say, the period 
of an edge wave or the duration of a wave group. 

rn+l = E(v1)ra+ i -g(v1), 

5. Concluding remarks 
We have described wave-induced longshore motion on a beach using a model for 

water motion appropriate in shallow water. The use of turbulent bores to represent 
wave fronts has enabled us  to estimate accurately the dissipation rate within the surf 
zone : this is particularly important in finding longshore velocity, the driving stress 
for which is dependent upon the dissipation rate. The fact that longshore motion may 
be considered independently of the method used to find the onshore motion has 
proved to be of value in considering periodic solutions of the equations of motion. 

The most important limitation to our work is the use of the Chkzy friction law. 
VC'hereas the effect of friction on the onshore motion is, as found by Packwood (1980), 
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significant only near the run-up tip, its effect on longshore motion is important 
throughout the surf zone. Moreover, although the work of Packwood & Peregrine 
(1981) suggests that the major flow properties of onshore motion are often insensitive 
to  the representation of bottom friction, this is unlikely to be the case for longshore 
motion: the solutions of $4 are sensitive to the value of the Ch6zy coefficient, and 
the form of the averaged solution, described in the preceding paragraph, reflects the 
form of the Ch6zy law. A significant improvement on the present work would be the 
development of a boundary-layer model to describe bottom friction. 

Although previous use of the Ch6zy law suggests that  it provides a useful de- 
scription of the effect of bottom friction on major flow properties, care may be 
needed in its application to problems involving longshore motion in which the value 
of the bottom shear stress is required. Packwood & Peregrine (1981) find that the 
value of bottom shear stress predicted by the Chkzy law may be very different from 
those found by the boundary-layer model of Packwood (1980), although major flow 
properties predicted by the two models may otherwise be very similar. 

I should like to acknowledge the initial works on this problem of Sampson (1978). 
I am grateful to Dr D. H. Peregrine for many useful suggestions and discussions 

during the course of this work, and to Dr A. R. Packwood for help and advice with 
computations. 
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